[關(guān)鍵詞]
[摘要]
目的 采用網(wǎng)絡(luò)藥理學(xué)法及分子對(duì)接技術(shù)探析異槲皮苷改善胰島素抵抗的分子機(jī)制,并通過(guò)體外實(shí)驗(yàn)研究異槲皮苷對(duì)胰島素抵抗的干預(yù)作用及機(jī)制。方法 利用PubChem、PharmMapper、GEO、CTD、GeneCards、OMIM等多個(gè)數(shù)據(jù)庫(kù)篩選異槲皮苷活性成分及胰島素抵抗相關(guān)靶點(diǎn);采用Cytoscape軟件將異槲皮苷治療胰島素抵抗的潛在靶點(diǎn)構(gòu)建蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò),并根據(jù)度值篩選核心靶點(diǎn)。利用基因本體(GO)與京都基因與基因組百科全書(KEGG)富集分析尋找與靶點(diǎn)蛋白相關(guān)的生物學(xué)通路,采用AutoDock Tools軟件模擬分子對(duì)接,預(yù)測(cè)異槲皮苷與關(guān)鍵靶點(diǎn)的結(jié)合度。體外實(shí)驗(yàn)采用異槲皮苷干預(yù)蛋白酪氨酸磷酸酶1B(PTP1B)質(zhì)粒轉(zhuǎn)染HepG2細(xì)胞,檢測(cè)不同濃度異槲皮苷干預(yù)后PTP1B的活性;構(gòu)建PTP1B質(zhì)粒轉(zhuǎn)染HepG2胰島素抵抗細(xì)胞模型,給予異槲皮苷(40μmol/L)干預(yù),葡萄糖氧化酶法、qRT-PCR、Western Blotting法檢測(cè)PTP1B等相關(guān)因子的表達(dá)。結(jié)果 網(wǎng)絡(luò)藥理學(xué)篩選得到異槲皮苷改善胰島素抵抗的交集靶點(diǎn)21個(gè),富集到GO條目2 761個(gè),主要涉及胰島素受體信號(hào)通路、糖原生物合成過(guò)程的調(diào)控等,富集到KEGG通路89條,涉及包括胰島素信號(hào)通路、胰島素抵抗、磷脂酰肌醇-3-羥激酶(PI3K)-蛋白激酶B(Akt)信號(hào)通路、磷酸腺苷活化的蛋白激酶(AMPK)信號(hào)通路等。分子對(duì)接結(jié)果顯示,異槲皮苷與靶點(diǎn)PTP1B、磷酸肌醇依賴性蛋白激酶1(PDPK1)、胰島素受體(INSR)、糖原合酶激酶3β(GSK3β)、AKT2均有一定的結(jié)合活性。體外實(shí)驗(yàn)結(jié)果顯示,異槲皮苷能有效抑制PTP1B活性,降低PTP1B過(guò)表達(dá)HepG2胰島素抵抗細(xì)胞中PTP1B、GSK3β的表達(dá),升高胰島素受體底物1(IRS-1)、葡萄糖轉(zhuǎn)運(yùn)蛋白-1(GLUT-1)等因子的表達(dá),改善細(xì)胞胰島素抵抗。結(jié)論 異槲皮苷可能通過(guò)抑制PTP1B調(diào)控PI3K/Akt信號(hào)通路因子活性改善胰島素抵抗。
[Key word]
[Abstract]
Objective To explore the potential mechanism of isoquercetin in treating insulin resistance based on network pharmacology and molecular docking, and verify the mechanism by cell experiment. Methods PubChem, PharmMapper, GEO, CTD, GeneCards, OMIM were used to screen the active components of isoquercetin and to predict the target. Cytoscape software was used to construct a protein interaction (PPI) network for potential targets of isoquercitrin in the treatment of insulin resistance, and the core targets were screened according to the degree value. GO and KEGG enrichment analysis were used to find biological pathways related to target proteins. AutoDock Tools software was used to simulate molecular docking and predict the binding degree of isoquercetin and key targets. HepG2 cells were transfected with PTP1B plasmid by isoquercitrin in vitro, and the activity of PTP1B after different concentrations of isoquercitrin was detected. HepG2 insulin-resistant cells were transfected with PTP1B plasmid, and treated with 40 μmol/L isoquercitrin. The expression of PTP1B and other related factors was detected by glucose oxidase, qRT-PCR, and Western Blotting. Results Network pharmacological screening obtained 21 intersection targets of isoquercitrin to improve insulin resistance, enriched into 2 761 GO items, mainly involved in the insulin receptor signaling pathway and the regulation of glycogen biosynthesis process, and enriched into 89 KEGG pathways. It involves insulin signaling pathway, insulin resistance, PI3K-Akt signaling pathway, AMPK signaling pathway and so on. The results of molecular docking showed that the key active components of isoquercetin had certain binding activity to the targets PTP1B, PDPK1, INSR, GSK3β, and AKT2. The results of in vitro experiments showed that isoquercetin could effectively inhibit the activity of PTP1B, reduce the expression of PTP1B and GSK3β, increase the expression of IRS-1, GLUT-1 and other factors in HepG2 insulin resistance cells with PTP1B overexpression, and improve the insulin resistance of cells. And isoquercetin may improve insulin resistance by inhibiting the activity of PI3K/Akt signaling pathway factors regulated by PTP1B.
[中圖分類號(hào)]
[基金項(xiàng)目]
國(guó)家自然科學(xué)基金資助項(xiàng)目(81260661,81860658,82160701);廣西自然科學(xué)基金資助項(xiàng)目(2018GXNSFAA281168);桂林市科學(xué)研究與技術(shù)開發(fā)計(jì)劃項(xiàng)目(20140120-1-9,20170109-47,20210227-5);北京醫(yī)衛(wèi)健康公益基金會(huì)醫(yī)學(xué)科學(xué)研究基金資助項(xiàng)目(YWJKJJHKYJJ-B184007,YWJKJJHKYJJ-B20197DS,YWJKJJHKYJJ-B20234DS);北京康盟慈善基金會(huì)醫(yī)學(xué)科研發(fā)展基金項(xiàng)目(KM226002);桂林醫(yī)學(xué)院碩士研究生科研項(xiàng)目(GYYK2022004)