[關(guān)鍵詞]
[摘要]
目的 運(yùn)用網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接技術(shù)探討大黃治療多囊卵巢綜合征的作用機(jī)制。方法 通過TCMSP、TCMID、TCMIP及UnitProt數(shù)據(jù)庫獲取大黃的活性成分及其靶點(diǎn),在GeneCards、DrugBank以及OMIM數(shù)據(jù)庫中提取多囊卵巢綜合征的作用靶點(diǎn),取兩者交集為大黃治療該疾病的有效作用靶點(diǎn),并繪制出韋恩圖;利用Cytoscape 3.7.1軟件構(gòu)建蛋白質(zhì)–蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)圖,并對(duì)其拓?fù)浞治?;利用Metascape數(shù)據(jù)庫進(jìn)行共同靶點(diǎn)的京都基因與基因組百科全書(KEGG)富集分析及基因本體(GO)生物學(xué)富集分析;利用AutoDockTools進(jìn)行分子對(duì)接及可視化處理。結(jié)果 得到大黃活性成分10個(gè),多囊卵巢綜合征疾病靶點(diǎn)1 966個(gè);主要活性成分包括決明內(nèi)酯、蘆薈大黃素、(−)-兒茶素、大黃酸、澤蘭黃醇等;關(guān)鍵靶點(diǎn)包括腫瘤壞死因子(TNF)、p53腫瘤蛋白(TP53)、白細(xì)胞介素-1β(IL-1B)、骨髓細(xì)胞瘤癌基因(MYC)等;主要通過p53、晚期糖基化終產(chǎn)物及其受體(AGE-RAGE)、β-連環(huán)蛋白(β-catenin)/白細(xì)胞介素-6(IL-6)、NADPH氧化酶2(NOX2)/c-Jun氨基末端激酶(JNK)、轉(zhuǎn)化生長因子-β1(TGF-β1)/Smad同源物3(Smad3)等信號(hào)通路來實(shí)現(xiàn)其治療效果。經(jīng)由分子對(duì)接技術(shù)驗(yàn)證,藥物的關(guān)鍵活性成分與疾病的核心靶點(diǎn)展現(xiàn)出優(yōu)異的結(jié)合特性。結(jié)論 運(yùn)用網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接技術(shù)發(fā)現(xiàn)大黃可能通過多靶點(diǎn)和多通路治療多囊卵巢綜合征。
[Key word]
[Abstract]
Objective Exploring the mechanism of Rheum palmatum in treatment of polycystic ovary syndrome based on network pharmacology and molecular docking. Methods The active components and their corresponding targets were systematically obtained through authoritative databases including the TCMSP, TCMID, TCMIP, and UniProt database. Disease targets of polycystic ovary syndrome were extracted from the GeneCards, DrugBank, and OMIM databases. The intersection of R. palmatum targets and polycystic ovary syndrome-related targets was identified as the potential therapeutic targets, and a Venn diagram was constructed. A protein-protein interaction (PPI) network was established using Cytoscape 3.7.1, and topological analysis was performed. KEGG pathway enrichment analysis and GO biological process enrichment analysis of the common targets were conducted using the Metascape database. Molecular docking and visualization were performed using AutoDockTools. Results A total of 10 active components of R. palmatum and 1 966 polycystic ovary syndrome-related disease targets were identified. Key active components included torachrysone, aloe-emodin, (−)-catechin, rhein, and eupatin, while critical targets included TNF, TP53, IL-1B, and MYC. The therapeutic effects were primarily mediated through pathways such as p53, AGE-RAGE, β-catenin/IL-6, NOX2/JNK, and TGF-β1/Smad3. Molecular docking confirmed strong binding affinities between the key active components of R. palmatum and the core disease targets. Conclusion Using network pharmacology and molecular docking technology, it was found that R. palmatum may treat polycystic ovary syndrome through multiple targets and multiple pathways.
[中圖分類號(hào)]
R285;R984
[基金項(xiàng)目]
湖南省自然科學(xué)基金資助項(xiàng)目(2021JJ30493);湖南省衛(wèi)生健康委員會(huì)科研計(jì)劃課題(C202305016294);湖南省教育廳科學(xué)研究項(xiàng)目(23A0306);湖南省自然科學(xué)基金資助項(xiàng)目(2025JJ60625);湖南省衛(wèi)生健康委衛(wèi)生科研課題(W20243198);湖南中醫(yī)藥大學(xué)校院聯(lián)合基金重點(diǎn)項(xiàng)目(2023XYLHJJ005)