[關(guān)鍵詞]
[摘要]
利用多元線性回歸可對待解決問題提出最優(yōu)的回歸方程組,說明各個自變量對因變量的影響;即使數(shù)據(jù)量很大,也不需要繁瑣的運算過程,仍然能夠迅速地得出結(jié)果,而且還能夠通過系數(shù)得到對各變量的理解,因此該方法對中藥研究中的有關(guān)問題特別適用。就多元線性回歸聯(lián)合紫外光譜(UV)法、紅外光譜(IR)法和高效液相色譜(HPLC)法在中藥生產(chǎn)加工、質(zhì)量控制、藥效物質(zhì)基礎(chǔ)研究等方面的應(yīng)用進行綜述,以期為多元線性回歸法在中藥研究中的更廣泛應(yīng)用提供參考。
[Key word]
[Abstract]
Multiple linear regression can be used to produce an optimal set of regression equations for a problem that accounts for the effect of the respective variables on the dependent variable. It can be carried out very quickly with large amounts of data, without the need for cumbersome arithmetic, and it is also possible to obtain an understanding of the individual variables through the coefficients, making it particularly suitable for the study of problems in Chinese medicine. This paper reviews the application of multiple linear regression with ultraviolet (UV) and infrared (IR) spectroscopy and high performance liquid chromatography (HPLC) in the production and processing, quality control, and therapeutic material basis studies of traditional Chinese medicines, with a view to providing some references for future applications of multiple linear regression in the study of traditional Chinese medicines.
[中圖分類號]
R965.1;R284.1
[基金項目]
內(nèi)蒙古自治區(qū)自然科學基金項目(2022MS08023,2020LH08002);2021年內(nèi)蒙古自治區(qū)關(guān)鍵技術(shù)攻關(guān)計劃項目(2021GG0176);內(nèi)蒙古自治區(qū)蒙醫(yī)藥協(xié)同創(chuàng)新中心科學研究項目(MYYXTYB202108);內(nèi)蒙古醫(yī)科大學科技百萬工程聯(lián)合項目(YKD2020KJBW[LH]054);內(nèi)蒙古醫(yī)科大學博士啟動基金項目(YKD2020BSJJ014);內(nèi)蒙古自治區(qū)級大學生創(chuàng)新創(chuàng)業(yè)項目(202210132062,202110132015);內(nèi)蒙古醫(yī)科大學“三位一體”大學生創(chuàng)新創(chuàng)業(yè)培育項目(SWYT2022025);包頭醫(yī)學院科學研究基金項目(BYJJ-QM201903);包頭醫(yī)學院花蕾計劃項目(HL2021058)