[關(guān)鍵詞]
[摘要]
目的 基于模式生物斑馬魚結(jié)合網(wǎng)絡(luò)藥理學(xué),研究枳殼的活性成分水合橙皮內(nèi)酯增強(qiáng)免疫作用及作用機(jī)制。方法 建立2種斑馬魚免疫低下模型:以雷帕霉素建立尾部中性粒細(xì)胞數(shù)目減少模型,以酒石酸長(zhǎng)春瑞濱建立靜脈血管中巨噬細(xì)胞熒光強(qiáng)度減弱模型,檢測(cè)水合橙皮內(nèi)酯(10、20、50、100、200 μg·mL-1)各給藥組斑馬魚尾部中性粒細(xì)胞數(shù)目、斑馬魚尾部靜脈血管中巨噬細(xì)胞熒光強(qiáng)度,計(jì)算中性粒細(xì)胞增長(zhǎng)率和巨噬細(xì)胞改善率?;诰W(wǎng)絡(luò)藥理學(xué)預(yù)測(cè)水合橙皮內(nèi)酯增強(qiáng)免疫作用的機(jī)制,使用 Pharm Mapper、中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP)進(jìn)行水合橙皮內(nèi)酯靶點(diǎn)篩選,運(yùn)用Gene Cards數(shù)據(jù)庫(kù)和 OMIM數(shù)據(jù)庫(kù)檢索增強(qiáng)免疫相關(guān)靶點(diǎn),運(yùn)用 Venny2.1將上述兩組靶點(diǎn)取交集后導(dǎo)入 String數(shù)據(jù)庫(kù)進(jìn)行蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)分析,進(jìn)行基因本體(GO)功能富集分析和京都基因與基因組百科全書(KEGG)通路富集分析,在 Cytoscape3.9.1軟件中構(gòu)建水合橙皮內(nèi)酯的增強(qiáng)靶點(diǎn) PPI網(wǎng)絡(luò),并以節(jié)點(diǎn)度值的中位數(shù)篩選關(guān)鍵靶點(diǎn)。結(jié)果 與模型組相比,水合橙皮內(nèi)酯可顯著增加斑馬魚尾部中性粒細(xì)胞數(shù)目(P<0.01、0.001)、靜脈血管中巨噬細(xì)胞熒光強(qiáng)度(P<0.05),證明水合橙皮內(nèi)酯具有抗雷帕霉素、酒石酸長(zhǎng)春瑞濱引起的免疫力低下作用,呈劑量相關(guān)性。水合橙皮內(nèi)酯增強(qiáng)免疫的作用機(jī)制可能與 AKT1、EGFR、SRC、MMP9、ESR1等關(guān)鍵靶點(diǎn)及 PI3K-Akt、Rap1、AGE-RAGE等信號(hào)通路有關(guān)。結(jié)論 水合橙皮內(nèi)酯具有增強(qiáng)免疫作用,可能通過調(diào)控PI3K-Akt、Rap1、AGE-RAGE等信號(hào)通路發(fā)揮作用。
[Key word]
[Abstract]
Objective To investigate the immunoenhancing effects and mechanisms of action of meranzin hydrate (MH), an active component of Aurantii Fructus, based on the model organism zebrafish in combination with network pharmacology.Methods Two types of immunocompromised zebrafish models were established: One using rapamycin to reduce the number of neutrophils in the tail, and another using vinorelbine to diminish the fluorescence intensity of macrophages in tail vein vessels. The neutrophil count in the tail and the fluorescence intensity of macrophages in tail vein vessels were measured in each treatment group of MH (10, 20, 50、 100, and 200 μg·mL-1), and the growth rate of neutrophils (%) and the improvement rate of macrophages (%) were calculated. The mechanism by which MH enhances immune function was predicted using network pharmacology, with target screening for MH conducted using PharmMapper and the TCMSP database. Immune-related targets were retrieved from the Gene Cards and OMIM databases. Intersection of these target sets was analyzed for protein interactions in the String Database, followed by GO and KEGG analyses. A PPI network of MH's immunomodulatory action was constructed in Cytoscape 3.9.1, with key targets identified based on the median degree value of nodes.Results Compared to the model group, MH significantly increased both the neutrophil count (P < 0.01, 0.001) in the tail and the fluorescence intensity(P < 0.05) of macrophages in tail vein vessels, demonstrating its dose-dependent protective effects against immune suppression induced by rapamycin and camptothecin. The immunoenhancing mechanism of MH may be associated with key targets such as AKT1, EGFR, SRC, MMP9, ESR1, and signaling pathways including PI3K-Akt, Rap1, and AGE-RAGE.Conclusion MH enhances immune function, potentially through the regulation of PI3K-Akt, Rap1, and AGERAGE signaling pathways.
[中圖分類號(hào)]
R285.5
[基金項(xiàng)目]
山東省科技型中小企業(yè)創(chuàng)新能力提升工程項(xiàng)目(2023TSGC0271);山東省自然科學(xué)基金聯(lián)合基金項(xiàng)目(ZR2021LZY021);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021CXGC010511-01-005)