[關(guān)鍵詞]
[摘要]
目的 建立經(jīng)典名方小續(xù)命湯基準(zhǔn)樣品的UPLC特征圖譜及多指標(biāo)成分定量分析方法,研究其基準(zhǔn)樣品量質(zhì)傳遞規(guī)律。方法 采用超高效液相色譜法(UPLC)建立小續(xù)命湯基準(zhǔn)樣品特征圖譜,明確特征峰歸屬及量質(zhì)傳遞情況。利用超高效液相色譜串聯(lián)三重四極桿質(zhì)譜(UPLC-QqQ-MS/MS)技術(shù),建立覆蓋全方12味藥材共21種指標(biāo)成分的定量分析方法,研究其量質(zhì)傳遞規(guī)律。結(jié)果 建立了15批小續(xù)命湯基準(zhǔn)樣品的特征圖譜,標(biāo)定了21個(gè)特征峰,指認(rèn)了其中11個(gè)特征峰信息。其中峰7、10(黃芩苷)、11、12、13(千層紙素A-7-O-β-D-葡萄糖醛酸苷)、14(漢黃芩苷)、19為黃芩專屬峰;峰5(甘草苷)、15、16、17、18、20(甘草酸)為炒甘草專屬峰;峰6、9(防己諾林堿)為防己專屬峰;峰1(芍藥苷)、3為白芍專屬峰;峰4(升麻素苷)、8(5-O-甲基維斯阿米醇苷)為防風(fēng)專屬峰;峰2(阿魏酸)為川芎專屬峰;峰21(6-姜辣素)為生姜專屬峰。各批次間相似度均≥0.995。15批小續(xù)命湯基準(zhǔn)樣品中,麻黃堿、偽麻黃堿、防己諾林堿、粉防己堿、人參皂苷Rg1、人參皂苷Re、黃芩苷、肉桂醛、肉桂酸、甘草苷、甘草酸、芍藥苷、阿魏酸、苦杏仁苷、次烏頭堿、苯甲酰烏頭原堿、苯甲酰次烏頭原堿、苯甲酰新烏頭原堿、升麻素苷、5-O-甲基維斯阿米醇苷及6-姜辣素共21種指標(biāo)成分的質(zhì)量分?jǐn)?shù)分別為1.109~1.704、0.324~0.545、0.371~1.297、0.577~1.324、0.159~0.256、0.157~0.284、17.223~21.873、1.350~1.918、1.424~2.053、2.078~3.053、3.067~3.761、4.006~5.055、0.199~0.270、0.547~0.819、0.001~0.008、0.002~0.003、3.284~6.027、0.024~0.056、0.671~0.951、0.376~0.579、0.153~0.242 mg·g-1。19種指標(biāo)成分的飲片至基準(zhǔn)樣品平均轉(zhuǎn)移率分別為麻黃堿35.04%~55.48%、偽麻黃堿36.30%~60.44%、防己諾林堿22.40%~30.71%、粉防己堿19.16%~27.78%、人參皂苷Rg1 19.66%~32.26%、人參皂苷Re 23.15%~33.72%、黃芩苷48.38%~62.82%、肉桂醛14.53%~19.87%、甘草苷59.61%~91.22%、甘草酸35.80%~47.53%、芍藥苷43.56%~58.70%、阿魏酸39.89%~58.10%、苦杏仁苷4.27%~5.66%、單酯型生物堿(苯甲酰烏頭原堿、苯甲酰次烏頭原堿和苯甲酰新烏頭原堿) 3 760.54%~7 390.92%、升麻素苷44.88%~66.33%、5-O-甲基維斯阿米醇苷37.88%~59.81%、6-姜辣素16.64%~22.95%。結(jié)論 建立的特征圖譜及含量測(cè)定方法專屬性強(qiáng)、準(zhǔn)確、可靠,能較為全面地反映小續(xù)命湯基準(zhǔn)樣品整體質(zhì)量,結(jié)合量質(zhì)傳遞分析,可為后續(xù)制劑的開發(fā)和質(zhì)量控制提供理論依據(jù)。
[Key word]
[Abstract]
Objective To establish the UPLC characteristic chromatogram and multi-index constituents content determination methods of benchmark samples of classical prescription Xiaoxuming Decoction, and to study its quantity-quality transmitting pattern. Methods A characteristic chromatogram detection method for benchmark samples of Xiaoxuming Decoction was established by ultraperformance liquid chromatography (UPLC). The attribution and quantity-quality transmitting of characteristic peaks in characteristic chromatograms were clarified. Quantitative determination methods for 21 constituents covering 12 traditional Chinese medicines in the benchmark samples were established by ultraperformance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS). The quantity-quality transmitting relationship between decoction pieces and benchmark samples was analyzed. Results The characteristic chromatograms for 15 batches of benchmark samples were established. A total of 21 characteristic peaks were identified, and 11 characteristic peak information were recognised. Specific attributions are as follows: Peaks 7, 10 (baicalin), 11, 12, 13 (oroxylin A-7-O-β-D-glucuronide), 14 (wogonoside), and 19 were specific to Scutellariae Radix; Peak 5 (liquiritin), 15, 16, 17, 18, and 20 (glycyrrhizic acid) were specific to stir-fried Glycyrrhizae Radix et Rhizoma; Peaks 6 and 9 (fangchinoline) were specific to Stephaniae Tetrandrae Radix; Peak 1 (paeoniflorin) and Peak 3 were specific to Paeoniae Radix Alba; Peak 4 (prim-O-Glucosylcimifugin) and 8 (5-O-methylvisammioside) were specific to Saposhnikoviae Radix; Peak 2 (ferulic acid) was specific to Chuanxiong Rhizoma; Peak 21 (6-gingerol) was specific to Zingiberis Rhizoma Recens. The similarity between each batch was ≥ 0.995. Quantitative analysis showed that the mass fraction of ephedrine, pseudoephedrine, fangchinoline, tetrandrine, ginsenoside Rg1, ginsenoside Re, baicalin, cinnamaldehyde, cinnamic acid, liquiritin, glycyrrhizic acid, paeoniflorin, ferulic acid, amygdalin, hypaconitine, benzoylaconine, benzoylhypaconine, benzoylmesaconine, prim-O-glucosylcimifugin, 5-O-methylvisammioside, and 6-gingerol in 15 benchmark samples were 1.109-1.704, 0.324-0.545, 0.371-1.297, 0.577-1.324, 0.159- 0.256, 0.157-0.284, 17.223-21.873, 1.350-1.918, 1.424-2.053, 2.078-3.053, 3.067-3.761, 4.006-5.055, 0.199-0.270, 0.547- 0.819, 0.001-0.008, 0.002-0.003, 3.284-6.027, 0.024-0.056, 0.671-0.951, 0.376-0.579, 0.153-0.242 mg·g-1. The average transfer rates of 19 constituents from decoction pieces to benchmark samples were ephedrine 35.04%-55.48%, pseudoephedrine 36.30%-60.44%, fangchinoline 22.40%-30.71%, tetrandrine 19.16%-27.78%, ginsenoside Rg1 19.66%-32.26%, ginsenoside Re 23.15%- 33.72%, baicalin 48.38%- 62.82%, cinnamaldehyde 14.53%- 19.87%, liquiritin 59.61%- 91.22%, glycyrrhizic acid 35.80%-47.53%, paeoniflorin 43.56%-58.70%, ferulic acid 39.89%-58.10%, amygdalin 4.27%-5.66%, monoester-type alkaloids (benzoylaconine, benzoylhypaconine and benzoylmesaconine) 3 760.54%-7 390.92%, prim-O-glucosylcimifugin 44.88%-66.33%, 5-O-methylvisammioside 37.88% - 59.81% and 6-gingerol 16.64% - 22.95%. Conclusion The established characteristic chromatogram and determination methods exhibit specificity, accuracy, and reliability. They effectively reflect the overall quality of Xiaoxuming Decoction benchmark samples. Combined with quantity-quality transmitting analysis, these methods provide a theoretical basis for the development and quality control of subsequent preparations.
[中圖分類號(hào)]
R283.6
[基金項(xiàng)目]
經(jīng)典名方產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟項(xiàng)目(232790492A); 云南省基礎(chǔ)研究重點(diǎn)項(xiàng)目(202301AS070070);云南省興滇英才計(jì)劃創(chuàng)新團(tuán)隊(duì)項(xiàng)目