[關(guān)鍵詞]
[摘要]
目的 通過分析醋潤蜜麩炒柴胡炮制過程中成分差異,探究建昌幫特色炮制方法對柴胡成分變化的影響,篩選差異性成分,為揭示其炮制機(jī)制奠定基礎(chǔ)。方法 采用超高效液相色譜-線性離子阱-靜電場軌道阱質(zhì)譜聯(lián)用(UPLC-LTQ-Orbitrap MS)技術(shù)分析生柴胡和醋潤蜜麩炒柴胡及其炮制過程中的化學(xué)成分,采用SIMCA 14.1軟件對樣品數(shù)據(jù)進(jìn)行主成分分析(principal component analysis,PCA)及正交偏最小二乘法-判別分析(orthogonal partial least squares-discriminant analysis,OPLS-DA),以變量重要性投影(variable importance projection,VIP)值>1為指標(biāo)篩選差異性成分。結(jié)果 從生柴胡中鑒定出63個化學(xué)成分,從醋潤蜜麩炒柴胡中鑒定出66種化學(xué)成分,包括柴胡皂苷類、黃酮類、有機(jī)酸類、香豆素類及其他類,篩選出炮制前后差異性成分21種[黃芩苷、L-(—)-阿拉伯糖醇、葡萄糖酸、芹菜素、檸檬酸、L-(—)-蘋果酸、(15Z)-9,12,13-三羥基-15-十八碳烯酸、柴胡皂苷a、壬二酸、柴胡皂苷b2、12,13-二羥基-9-十八碳烯酸、D-(—)-奎寧酸、反-6-羥基十八碳-4-烯酸、(±)-9-氫過氧基十八碳-10,12-二羧酸、羅漢松脂素、2″-O-乙酰柴胡皂苷a、綠原酸、9,10,13-三羥基-11-十八碳烯酸、柴胡次皂苷f、柴胡皂苷d和漢黃芩素]。通過峰面積比較發(fā)現(xiàn),芹菜素、L-(—)-蘋果酸、(15Z)-9,12,13-三羥基-15-十八碳烯酸、壬二酸、柴胡皂苷b2、12,13-二羥基-9-十八碳烯酸、反-6-羥基十八碳-4-烯酸、(±)-9-氫過氧基十八碳-10,12-二羧酸、綠原酸、9,10,13-三羥基-11-十八碳烯酸、柴胡次皂苷f和漢黃芩素相對含量升高,黃芩苷、L-(—)-阿拉伯糖醇、柴胡皂苷a、羅漢松脂素、2″-O-乙酰柴胡皂苷a和柴胡皂苷d相對含量降低,葡糖酸、檸檬酸和D-(—)-奎寧酸為炮制后新增成分。柴胡炮制過程中,經(jīng)分析發(fā)現(xiàn)柴胡生品、醋潤后、蜜麩炒后差異顯著,共篩選出23個差異性成分[檸檬酸、葡萄糖酸、(15Z)-9,12,13-三羥基-15-十八碳烯酸、黃芩苷、9,10,13-三羥基-11-十八碳烯酸、羅漢松脂素、柴胡皂苷a、芹菜素、(±)-9-氫過氧基十八碳-10,12-二羧酸、異鼠李素、柴胡次皂苷f、12,13-二羥基-9-十八碳烯酸、馬來酸、綠原酸、麻黃脂肪酸f、2,4-二羥基-2,3-雙[(4-羥基-3-甲氧苯基)甲基]丁酸、柴胡皂苷d、3-羥基-3,5,5-三甲基-4-(3-氧代-1-丁烯-1-亞基)環(huán)己基-I(2)-D-葡萄糖硫苷、鳥苷、柴胡皂苷e、15,16-二羥基-10,13-十八碳二烯酸、D-(+)-阿拉伯糖醇和1-O-[(3β,5ξ,9ξ)-3-(β-D-葡糖基)-27-羥基-27,28-二氧代齊墩果-12-烯-28-基]-β-D-葡萄糖]。結(jié)論 柴胡經(jīng)醋潤蜜麩炒后,皂苷類成分發(fā)生轉(zhuǎn)換,酚酸類成分種類和含量增多,刺激性成分含量降低,且不同炮制階段成分差異較為顯著,為深入研究醋潤蜜麩炒柴胡的炮制作用機(jī)制奠定基礎(chǔ)。
[Key word]
[Abstract]
Objective By analyzing the difference of components of Chaihu (Bupleuri Radix, BR) by vinegar wetting and honey bran fried during processing, the effects of Jianchangbang’s characteristic processing methods on the changes of components of BR were explored, and the differential components were screened to lay a foundation for revealing its processing mechanism. Methods The UPLC-LTQ-Orbitrap MS technology was used to analyze the chemical components of BR, stir-fried BR (sfBR) and during the processing. The SIMCA 14.1 software was used to conduct principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) on the sample data. The variable importance in projection (VIP) value > 1 was used as an indicator to screen out differential components. Results A total of 63 chemical components were identified from BR, and 66 chemical components were identified from sfBR, including saikosaponins, flavonoids, organic acids, coumarins and others. A total of 21 differential components were screened out before and after processing [baicalin, L-(−)-arabitol, gluconic acid, apigenin, citric acid, L-(−)-malic acid, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, saikosaponin a, azelaic acid, saikosaponin b2, 12,13-dihydroxy-9-octadecenoic acid, D-(−)-quinic acid, trans-6-hydroxyoctadec-4-enoic acid, (±)-9-hydroperoxyoctadeca-10,12-dicarboxylic acid, matairesinol, 2″-O-acetylsaikosaponin a, chlorogenic acid, 9,10,13-trihydroxy-11-octadecenoic acid, saikogenin f, saikosaponin d, and wogonin]. By comparing the peak area, it was found that the relative contents of apigenin, L-(−)-malic acid, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, azelaic acid, saikosaponin b2, 12,13-dihydroxy-9-octadecenoic acid, trans-6-hydroxyoctadec-4-enoic acid, (±)-9-hydroperoxyoctadeca-10,12-dicarboxylic acid, chlorogenic acid, 9,10,13-trihydroxy-11-octadecenoic acid, saikogenin f, and wogonin increased, the relative contents of baicalin, L-(−)-arabitol, saikosaponin a, matairesinol, 2″-O-acetylsaikosaponin a, and saikosaponin d decreased, and gluconic acid, citric acid and D-(−)-quinic acid were newly added components after processing. During the processing of BR, it was found through analysis that there were significant differences among raw products, after being moistened with vinegar, and after being fried with honey bran. A total of 23 differential components were screened out [citric acid, gluconic acid, (15Z)-9,12,13-trihydroxy-15-octadecenoic acid, baicalin, 9,10,13-trihydroxy-11-octadecenoic acid, matairesinol, saikosaponin a, apigenin, (±)-9-hydroperoxyoctadeca-10,12-dicarboxylic acid, isorhamnetin, saikogenin f, 12,13-dihydroxy-9-octadecenoic acid, maleic acid, chlorogenic acid, ephedra fatty acid f, 2,4-dihydroxy-2,3-bis[(4-hydroxy-3-methoxyphenyl) methyl]butanoic acid, saikosaponin d, 3-hydroxy-3,5,5-trimethyl-4-(3-oxo-1-buten-1-ylidene) cyclohexyl-I(2)-D-glucothioside, guanosine, saikosaponin e, 15,16-dihydroxy-10,13-octadecadienoic acid, D-(+)-arabitol, and 1-O-[(3β,5ξ,9ξ)-3-(β-D-glucosyl)-27-hydroxy-27,28-dioxoolean-12-en-28-yl]-β-D-glucopyranose]. Conclusion After BR is processed with vinegar moistening to stir-baking with honey bran, the saponin components are converted, the types and contents of phenolic acid components increase, the content of irritating components decreases, and the component differences at different processing stages are relatively significant. This study can lay a foundation for in-depth study of the processing mechanism of BR by vinegar moistening to stir-baking with honey bran.
[中圖分類號]
R283.6
[基金項(xiàng)目]
江西省重點(diǎn)研發(fā)計(jì)劃(20232BBG70013)